Line energies in micromagnetism

Benoît Merlet (CMAP)

(with Radu Ignat, Université Paris-Sud)

ANR - MicroMANIP

POITIERS, August 2010

Domain: $\omega \subset \mathbb{R}^2$. Magnetization $m \in H^1(\omega, S^2)$. $m' = (m_1, m_2)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - - のへぐ

Domain: $\omega \subset \mathbb{R}^2$. Magnetization $m \in H^1(\omega, S^2)$. $m' = (m_1, m_2)$.

• Aviles-Giga '86: $m: \omega \to S^2$, $\nabla \cdot (m'\mathbf{1}_{\omega}) = 0$.

$$\mathsf{E}_{arepsilon}(m') \; := \; rac{arepsilon}{2} \int_{\omega} |
abla m'|^2 + rac{1}{2arepsilon} \int_{\omega} |m_3|^4 \, .$$

Domain: $\omega \subset \mathbb{R}^2$. Magnetization $m \in H^1(\omega, \mathbb{S}^2)$. $m' = (m_1, m_2)$.

• Aviles-Giga '86: $m: \omega \to S^2$, $\nabla \cdot (m'\mathbf{1}_{\omega}) = 0$.

$$\mathsf{E}_{arepsilon}(m') \; := \; rac{arepsilon}{2} \int_{\omega} |
abla m'|^2 + rac{1}{2arepsilon} \int_{\omega} |m_3|^4 \; .$$

• Model studied by Alouges, Rivières and Serfaty ('02).

$$\mathsf{E}_{\varepsilon,\beta}(m) \ := \ \frac{\varepsilon}{2} \int_{\omega} |\nabla m|^2 + \frac{1}{\beta} \int_{\omega} m_3^2 + \frac{1}{2\varepsilon} \int_{\mathsf{R}^2} |\nabla u|^2.$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Stray field: $\nabla u := \nabla \Delta^{-1} \{ \nabla \cdot \{ m' \mathbf{1}_{\omega} \} \}.$ $\beta << \varepsilon << 1.$

Domain: $\omega \subset \mathbb{R}^2$. Magnetization $m \in H^1(\omega, \mathbb{S}^2)$. $m' = (m_1, m_2)$.

• Aviles-Giga '86: $m: \omega \to S^2$, $\nabla \cdot (m'\mathbf{1}_{\omega}) = 0$.

$$\mathsf{E}_{arepsilon}(m') \; := \; rac{arepsilon}{2} \int_{\omega} |
abla m'|^2 + rac{1}{2arepsilon} \int_{\omega} |m_3|^4$$

• Model studied by Alouges, Rivières and Serfaty ('02).

$$\mathsf{E}_{\varepsilon,\beta}(m) \ := \ \frac{\varepsilon}{2} \int_{\omega} |\nabla m|^2 + \frac{1}{\beta} \int_{\omega} m_3^2 + \frac{1}{2\varepsilon} \int_{\mathsf{R}^2} |\nabla u|^2.$$

Stray field: $\nabla u := \nabla \Delta^{-1} \{ \nabla \cdot \{ m' \mathbf{1}_{\omega} \} \}.$ $\beta << \varepsilon << 1.$

• Bloch walls : $m \in H^1(\omega, S^2)$ and

$$\mathsf{E}_{\varepsilon,\beta}(m) := \frac{\varepsilon}{2} \int_{\omega} |\nabla m|^2 + \frac{1}{2\varepsilon} \int_{\omega} |m_3|^2 + \frac{1}{\beta} \int_{\mathsf{R}^2} |\nabla u|^2.$$

500

Prediction (by van der Berg): Limiting Configurations

$$\begin{cases} m_3 = 0, & |m| = 1, \text{ i. e. } m(x) \in S^1 \\ \nabla \cdot m = 0 & \text{in } \omega, & m \cdot \nu = 0 & \text{on } \partial \omega. \end{cases}$$
(1)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Prediction (by van der Berg): Limiting Configurations

$$\begin{cases} m_3 = 0, & |m| = 1, \text{ i. e. } m(x) \in S^1 \\ \nabla \cdot m = 0 & \text{in } \omega, & m \cdot \nu = 0 & \text{on } \partial \omega. \end{cases}$$
(1)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Let $m = \nabla^{\perp} \psi$. Then

$$|\nabla \psi| = 1$$
 in ω and $\psi = 0$ on $\partial \omega$.

⇒ NO smooth solution (jump lines or vortices pour *m*) A special solution: the Landau state: $m_0 := \nabla^{\perp} \operatorname{dist}(x, \partial \omega)$

◆□▶▲御▶▲臣▶▲臣▶ 臣 めんの

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 の々ぐ

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Formally,

$$E_{\varepsilon}(m_{\varepsilon}) \xrightarrow{\varepsilon\downarrow 0} \int_{J} f(|m^{+}-m^{-}|) d\mathcal{H}^{1}.$$

▲□▶ ▲□▼ ▲目▼ ▲目▼ ▲□▼ ● ●

where *f* depends on the 1D problem.

Formally,

$$E_{\varepsilon}(m_{\varepsilon}) \xrightarrow{\varepsilon\downarrow 0} \int_{J} f(|m^{+}-m^{-}|) d\mathcal{H}^{1}.$$

where f depends on the 1D problem.

Examples :

- AG \rightsquigarrow $f(d) = d^3$,
- ARS \rightsquigarrow $f(d) = \sin \theta \theta \cos \theta$, où $m^{\pm} = (\cos \theta, \pm \sin \theta)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• $IM \quad \rightsquigarrow \quad f(d) = d^2$,

Let $f \in C([0, 2], \mathbb{R}+)$ be a cost function,

For $m \in BV(\omega, S^1)$ satisfying $\nabla \cdot m \equiv 0$ and $m = \tau$ on $\partial \omega$ we set

$$I_f(m) := \int_J f(|m^+ - m^-|) \, d\mathcal{H}^1.$$

Recall : if $m \in BV$, then

$$\nabla m = \nabla_d m + (m^+ - m^-) \otimes v \mathcal{H}^1 \bot J,$$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

where $\nabla_d m$ is a diffuse measure, where *J* is the \mathcal{H}^1 -rectifiable jump set, where ν is a unit normal vector and where m^{\pm} are the traces of *m* on *J*.

Let $f \in C([0, 2], \mathbb{R}+)$ be a cost function,

For $m \in BV(\omega, S^1)$ satisfying $\nabla \cdot m \equiv 0$ and $m = \tau$ on $\partial \omega$ we set

$$I_f(m) := \int_J f(|m^+ - m^-|) \, d\mathcal{H}^1.$$

Recall : if $m \in BV$, then

$$\nabla m = \nabla_d m + (m^+ - m^-) \otimes v \mathcal{H}^1 \bot J,$$

where $\nabla_d m$ is a diffuse measure, where *J* is the \mathcal{H}^1 -rectifiable jump set, where *v* is a unit normal vector and where m^{\pm} are the traces of *m* on *J*.

Question 1 : Prove the existence of minimizers.

Question 2 : Identify the minimizers ?

Existence of minimizers

Usual method :

Compactness of minimizing sequences

$$I_f(m_k) \leq \lambda \implies m_k \stackrel{k\uparrow\infty}{\rightarrow} m;$$

• The functional *I*_f has to be lower semi-continuous for the same topology,

$$I_f(m) \leq \liminf_{k \uparrow \infty} I_f(m_k).$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Existence of minimizers

Usual method :

Compactness of minimizing sequences

$$I_f(m_k) \leq \lambda \implies m_k \stackrel{k\uparrow\infty}{\rightarrow} m;$$

• The functional *I*_f has to be lower semi-continuous for the same topology,

$$\mathcal{I}_f(m) \leq \liminf_{k \uparrow \infty} \mathcal{I}_f(m_k).$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Problem: The sets $\{m : \mathcal{I}_f(m) < \lambda\}$ are not compact in BV.

Existence of minimizers

Usual method :

Compactness of minimizing sequences

$$I_f(m_k) \leq \lambda \implies m_k \stackrel{k\uparrow\infty}{\rightarrow} m;$$

• The functional *I*_f has to be lower semi-continuous for the same topology,

$$\mathcal{I}_f(m) \leq \liminf_{k \uparrow \infty} \mathcal{I}_f(m_k).$$

Problem: The sets $\{m : \mathcal{I}_f(m) < \lambda\}$ are not compact in BV.

Method : we will extand \mathcal{I}_f as a fonctional \mathcal{E} defined on L^1 , l.s.c and such that the sets { $\mathcal{E} < \lambda$ } are compact.

Lower semi-continuity and micro-structure

The minimal cost of a jump angle θ is

$$\tilde{f}(d) = \begin{cases} \sin \theta - \theta \cos \theta & \text{if } 0 \le \theta \le \pi/4, \\ \sqrt{2} - \left(\frac{\pi}{2} - \theta\right) \cos \theta - \sin \theta & \text{if } \pi/4 < \theta \le \pi/2 \end{cases}$$

If $f(d) = d^p$, p > 3 we know that \mathcal{I}_f is not l.s.c. (Ambrosio, DeLellis, Mantegazza '99)

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

If $f(d) = d^p$, p > 3 we know that \mathcal{I}_f is not l.s.c. (Ambrosio, DeLellis, Mantegazza '99)

If $f(d) = d^3$ (ADLM), I_f is l.s.c.

Question : Are there any favorable micro-structure for the cost $f(d) = d^2$?

Entropies

Definition (DKMO '00) We say that $\Phi \in C^{\infty}(S^1, \mathbb{R}^2)$ is an entropy if for every $m \in C^{\infty}(\omega, \mathbb{R}^2)$,

 $\nabla \cdot m \equiv 0$ et |m| = 1 \implies $\nabla \cdot \{\Phi(m)\} \equiv 0.$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

We will denote by ENT, the space of entropies.

Entropies

Definition (DKMO '00) We say that $\Phi \in C^{\infty}(S^1, \mathbb{R}^2)$ is an entropy if for every $m \in C^{\infty}(\omega, \mathbb{R}^2)$,

 $abla \cdot m \equiv 0$ et |m| = 1 \implies $\nabla \cdot \{\Phi(m)\} \equiv 0$.

We will denote by ENT, the space of entropies.

Proposition If $m \in BV(\omega, S^1)$ satisfies $\nabla \cdot m = 0$, The entropy production writes,

$$\mu_{\Phi(m)} = [\Phi(m^+) - \Phi(m^-)] \cdot \nu \mathcal{H}^1 \sqcup J.$$

In particular

$$\int_{\omega} d\mu_{\Phi(m)} = \int_{J} [\Phi(m^{+}) - \Phi(m^{-})] \cdot v \, d\mathcal{H}^{1}.$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

For $\alpha \in C_c^{\infty}(\omega)$, we have :

$$\langle \mu_{\Phi}, \alpha \rangle = \int_{J} [\Phi(m^{+}) - \Phi(m^{-})] \cdot v(x) \alpha(x) d\mathcal{H}^{1}(x).$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

For $\alpha \in C_c^{\infty}(\omega)$, we have :

$$\langle \mu_{\Phi}, \alpha \rangle = \int_{J} [\Phi(m^{+}) - \Phi(m^{-})] \cdot v(x) \alpha(x) d\mathcal{H}^{1}(x)$$

Definition

Let $S \subset ENT$. For $m \in L^1(\omega, S^1)$ such that $\nabla \cdot m = 0$, we set

$$\mathcal{E}_{\mathcal{S}}(m) := \sup \bigg\{ \sum_{i=1}^{n} \langle \mu_{\Phi_i}, \alpha_i \rangle : (\Phi_i, \alpha_i) \subset \mathcal{S} \times C_c^{\infty}(\omega, \mathbf{R}_+), \sum_{i=1}^{n} \alpha_i \leq 1 \bigg\}.$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

For $\alpha \in C_c^{\infty}(\omega)$, we have :

$$\langle \mu_{\Phi}, \alpha \rangle = \int_{J} [\Phi(m^{+}) - \Phi(m^{-})] \cdot v(x) \alpha(x) d\mathcal{H}^{1}(x).$$

Definition

Let $S \subset ENT$. For $m \in L^1(\omega, S^1)$ such that $\nabla \cdot m = 0$, we set

$$\mathcal{E}_{\mathcal{S}}(m) := \sup \bigg\{ \sum_{i=1}^{n} \langle \mu_{\Phi_i}, \alpha_i \rangle : (\Phi_i, \alpha_i) \subset \mathcal{S} \times \mathcal{C}_c^{\infty}(\omega, \mathbf{R}_+), \sum_{i=1}^{n} \alpha_i \leq 1 \bigg\}.$$

(日) (日) (日) (日) (日) (日) (日) (日) (日)

For the invariance under isometries, we assume that

- S is symmetric (S = -S),
- S is equivariant ($S = R \circ S \circ R^{-1}$ for every roration R).

Cost functions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Proposition The functional \mathcal{E}_S is lower semi-continuous for the L^1 topology.

Cost functions

Proposition The functional \mathcal{E}_S is lower semi-continuous for the L^1 topology.

Proposition For $m \in BV(\omega, S^1)$ satisfying $\nabla \cdot m = 0$, we have

 $\mathcal{E}_{S}(m) = \mathcal{I}_{c_{S}}(m),$

where

$$c_{S}(d) := \sup \left\{ \left[\Phi(z^{+}) - \Phi(z^{-}) \right] \cdot v : \\ \Phi \in S, \ (z^{+}, z^{-}, v) \in S^{1}, \ (z^{+} - z^{-}) \cdot v = 0, \ |z^{+} - z^{-}| = d \right\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

Proposition Let $S \subset ENT$. If $d^3 = O(c_S(d))$ then $\{\mathcal{E}_S(m) < \lambda\}$ is relatively compact in L^1 . This leads to the existence of minimizers of \mathcal{E}_S .

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Proposition Let $S \subset ENT$. If $d^3 = O(c_S(d))$ then $\{\mathcal{E}_S(m) < \lambda\}$ is relatively compact in L^1 . This leads to the existence of minimizers of \mathcal{E}_S . Idea of the proof (DKMO): If (m_k) is such that $\mathcal{E}_S(m_k) < \lambda$, then for every $\Phi \in ENT$, we have

 $\left(\int_{\omega} |\nabla \cdot [\Phi(m_k)]|\right)$ is bounded $\implies (\nabla \cdot [\Phi(m_k)])$ compact in $H^{-1}(\omega)$.

Proposition Let $S \subset ENT$. If $d^3 = O(c_S(d))$ then $\{\mathcal{E}_S(m) < \lambda\}$ is relatively compact in L^1 . This leads to the existence of minimizers of \mathcal{E}_S . Idea of the proof (DKMO): If (m_k) is such that $\mathcal{E}_S(m_k) < \lambda$, then for every $\Phi \in ENT$, we have

 $\left(\int_{\omega} |\nabla \cdot [\Phi(m_k)]|\right)$ is bounded $\implies (\nabla \cdot [\Phi(m_k)])$ compact in $H^{-1}(\omega)$.

so, by the div-curl Lemma,

 $\Phi(m_k) \times \tilde{\Phi}(m_k) \xrightarrow{k\uparrow\infty} \lim_{k\uparrow\infty} \Phi(m_k) \times \lim_{k\uparrow\infty} \tilde{\Phi}(m_k).$

・ロト・西ト・ヨト・ヨト・ 日・ つくぐ

Proposition Let $S \subset ENT$. If $d^3 = O(c_S(d))$ then $\{\mathcal{E}_S(m) < \lambda\}$ is relatively compact in L^1 . This leads to the existence of minimizers of \mathcal{E}_S . Idea of the proof (DKMO): If (m_k) is such that $\mathcal{E}_S(m_k) < \lambda$, then for every $\Phi \in ENT$, we have

 $\left(\int_{\omega} |\nabla \cdot [\Phi(m_k)]|\right)$ is bounded $\implies (\nabla \cdot [\Phi(m_k)])$ compact in $H^{-1}(\omega)$.

so, by the div-curl Lemma,

$$\Phi(m_k) \times \tilde{\Phi}(m_k) \xrightarrow{k \uparrow \infty} \lim_{k \uparrow \infty} \Phi(m_k) \times \lim_{k \uparrow \infty} \tilde{\Phi}(m_k).$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

The set *ENT* is sufficiently large for concluding that (m_k) is compact in $L^1(\omega)$.

Proposition Let $S \subset ENT$. If $d^3 = O(c_S(d))$ then $\{\mathcal{E}_S(m) < \lambda\}$ is relatively compact in L^1 . This leads to the existence of minimizers of \mathcal{E}_S . Idea of the proof (DKMO): If (m_k) is such that $\mathcal{E}_S(m_k) < \lambda$, then for every $\Phi \in ENT$, we have

 $\left(\int_{\omega} |\nabla \cdot [\Phi(m_k)]|\right)$ is bounded $\implies (\nabla \cdot [\Phi(m_k)])$ compact in $H^{-1}(\omega)$.

so, by the div-curl Lemma,

$$\Phi(m_k) \times \tilde{\Phi}(m_k) \xrightarrow{k \uparrow \infty} \lim_{k \uparrow \infty} \Phi(m_k) \times \lim_{k \uparrow \infty} \tilde{\Phi}(m_k).$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

The set *ENT* is sufficiently large for concluding that (m_k) is compact in $L^1(\omega)$.

Back to the initial cost function

Given a cost-function f, for proving lower semi-continuity of I_f , it is enough to find $S \subset ENT$ such that $c_S = f$.

Thus, we are looking for a family $S = \langle S_0 \rangle$, such that,

$$f(2\sin\theta) = \sup_{\Phi \in S} \left| \left[\Phi(z^+) - \Phi(z^-) \right] \cdot e_1 \right|,$$

$$z^{\pm} = (\cos\theta, \pm \sin\theta), \ 0 \le \theta \le \pi/2.$$

Back to the initial cost function

Given a cost-function f, for proving lower semi-continuity of I_f , it is enough to find $S \subset ENT$ such that $c_S = f$.

Thus, we are looking for a family $S = \langle S_0 \rangle$, such that,

$$f(2\sin\theta) = \sup_{\Phi \in S} \left| \left[\Phi(z^+) - \Phi(z^-) \right] \cdot e_1 \right|,$$

$$z^{\pm} = (\cos\theta, \pm \sin\theta), \ 0 \le \theta \le \pi/2.$$

Lemma

$$\Phi \in ENT \iff \exists \varphi \in C^{\infty}(S^1) \text{ s.t. } \Phi(z) = \varphi(z)z + \frac{d}{d\theta}\varphi(z)z^{\perp}.$$

Back to the initial cost function

Given a cost-function f, for proving lower semi-continuity of I_f , it is enough to find $S \subset ENT$ such that $c_S = f$.

Thus, we are looking for a family $S = \langle S_0 \rangle$, such that,

$$f(2\sin\theta) = \sup_{\Phi \in S} \left| \left[\Phi(z^+) - \Phi(z^-) \right] \cdot e_1 \right|,$$

$$z^{\pm} = (\cos\theta, \pm \sin\theta), \ 0 \le \theta \le \pi/2.$$

Lemma

$$\Phi \in ENT \iff \exists \varphi \in C^{\infty}(S^1) \text{ s.t. } \Phi(z) = \varphi(z)z + \frac{d}{d\theta}\varphi(z)z^{\perp}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Set $\lambda = \varphi + \frac{d}{d\theta^2} \varphi$. We have for $z^{\pm} = (\cos \theta, \pm \sin \theta)$, $[\Phi(z^+) - \Phi(z^-)] \cdot e_1 = \lambda \star \{\mathbf{1}_{(-\theta,\theta)} \sin\}.$

Conclusion

• AG : $f(d) = d^3$, Ok with

 $\Phi(m_1, m_2) = (m_1^3/3 + m_2^2 m_1, m_2^3/3 + m_2^2 m_2)$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Conclusion

• AG : $f(d) = d^3$, Ok with

$$\Phi(m_1, m_2) = (m_1^3/3 + m_2^2 m_1, m_2^3/3 + m_2^2 m_2)$$

• ARS : $\tilde{f}(d)$, Ok with 1 entropy (+ rotations and symmetries)

Conclusion

• AG : $f(d) = d^3$, Ok with

 $\Phi(m_1, m_2) = (m_1^3/3 + m_2^2 m_1, m_2^3/3 + m_2^2 m_2)$

• ARS : $\tilde{f}(d)$, Ok with 1 entropy (+ rotations and symmetries)

• $f(d) = d^2$, Ok with a family

 $\{\Phi_{\theta}, \ 0 \leq \theta \leq \pi/2\}.$

 \rightarrow no micro-structure.

A natural solution is the Landau state $m_0(x) := \nabla^{\perp} d(x, \partial \Omega)$

A natural solution is the Landau state $m_0(x) := \nabla^{\perp} d(x, \partial \Omega)$

Conjecture (AG, ADLM): if $f(d) = d^p$, $1 \le p \le 3$ and ω is convex then m_0 minimizes \mathcal{I}_f .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

A natural solution is the Landau state $m_0(x) := \nabla^{\perp} d(x, \partial \Omega)$

Conjecture (AG, ADLM): if $f(d) = d^p$, $1 \le p \le 3$ and ω is convex then m_0 minimizes \mathcal{I}_f .

Known result (AG) : If d = 1, ω convex polygon, m_0 minimizes \mathcal{I}_f among piecewise constant mappings (no vortex). $\int_J |[\nabla \psi]| = \int_{\omega} |\Delta \psi| \ge |\int_{\omega} \Delta \psi| = |\partial \omega|.$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

A natural solution is the Landau state $m_0(x) := \nabla^{\perp} d(x, \partial \Omega)$

Conjecture (AG, ADLM): if $f(d) = d^p$, $1 \le p \le 3$ and ω is convex then m_0 minimizes \mathcal{I}_f .

Known result (AG) : If d = 1, ω convex polygon, m_0 minimizes \mathcal{I}_f among piecewise constant mappings (no vortex). $\int_J |[\nabla \psi]| = \int_{\omega} |\Delta \psi| \ge |\int_{\omega} \Delta \psi| = |\partial \omega|.$

Known result (Jin, Kohn '00) : there exists a non convex ω such that for $f(d) = d^3$, m_0 is not the unique minimizer.

(日) (日) (日) (日) (日) (日) (日) (日) (日)

A natural solution is the Landau state $m_0(x) := \nabla^{\perp} d(x, \partial \Omega)$

Conjecture (AG, ADLM): if $f(d) = d^p$, $1 \le p \le 3$ and ω is convex then m_0 minimizes \mathcal{I}_f .

Known result (AG) : If d = 1, ω convex polygon, m_0 minimizes \mathcal{I}_f among piecewise constant mappings (no vortex). $\int_J |[\nabla \psi]| = \int_{\omega} |\Delta \psi| \ge |\int_{\omega} \Delta \psi| = |\partial \omega|.$

Known result (Jin, Kohn '00) : there exists a non convex ω such that for $f(d) = d^3$, m_0 is not the unique minimizer.

Proposition (Ignat, M. '10) : There exists ω non convex such that $f(d) \ge 0$ sur $[0, \sqrt{2}/2]$, m_0 is not a minimizer.

Construction of ω

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

▲□▶▲□▶▲□▶▲□▶ ■ のへで

|▲□▶▲□▶▲□▶▲□▶ □ - つへで

 $I_f(\tilde{m}) = \frac{\sqrt{2}}{2} I_f(m_0).$

▲□▶▲□▶▲□▶▲□▶ = のへで

Construction of $\omega_{\varepsilon} := \omega \setminus \{\partial \omega + B(0, \varepsilon)\}$

 m_0

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- ◆ □ ▶ ◆ 回 ▶ ★ 回 ▶ ◆ 回 ▶ → 回 ▶ ◆ 回 ▶ →

$$I_f(\tilde{m}) = \frac{\sqrt{2}}{2} I_f(m_0) + O(\varepsilon).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

Thank you for your attention !

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ