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e Aviles-Giga'86: m: w — S?, V- (m'l,) = 0.

& 1
E.(m') = Efw V' |2 + Z—wa Img|* |

e Model studied by Alouges, Rivieres and Serfaty ('02).

£ 1
Eep(m) = Efw|Vm|2 +5 [, m5+ ngz IVul?.

Stray field: Vu := VA1 {V - {m’1,}}. B <<e<< 1l
e Bloch walls : m € H}(w, S?) and

1
Ecp(m) = - f Vmi2 + = [ Imsf* + = fszuF
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(1)

m3=0, |m=1, i.e m(x)eS?!
V.-m=0 in w, m-v=0 on dw.

Let m = V4. Then
Vy|=1inw and ¢ =0 on Jdw.

= NO smooth solution (jump lines or vortices pour m)

A special solution: the Landau state: mp := V* dist(x, dw)
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where f depends on the 1D problem.

Examples :
e AG ~ f(d)=d°,

e ARS ~» f(d)=sinf—-6cosf, ou m*=(cosh,=sinb).

e IM ~ f(d)=d?



Line Energies
Let f € C([0, 2], R+) be a cost function,

For m € BV(w, S*) satisfying V- m = 0 and m = 7 on dw we set
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where Vym is a diffuse measure, where J is the H*-rectifiable
jump set, where v is a unit normal vector and where m* are the
traces of mon J.
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Ti(m) = fJf(|m+—m—|)d7{1.

Recall : if m € BV, then

Vm = Vgm+ (mt —m )@ vH'LJ,
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Question 1 : Prove the existence of minimizers.

Question 2 : Identify the minimizers ?
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Existence of minimizers
Usual method :
e Compactness of minimizing sequences

kToo
If(mk) <A e mg — m;

e The functional 7 has to be lower semi-continuous for the
same topology,

If(m) < Iir!pTianf(mk).

Problem: The sets {m : 7¢(m) < A} are not compact in BV.

Method : we will extand 7 as a fonctional & defined on L1, I.s.c
and such that the sets {& < A} are compact.



Lower semi-continuity and micro-structure

f(d) = sin6 — Hcos 6. v
I
m‘l ¢ '/ \ ? Tm+
LN NS !
AN
LN N
The minimal cost of a jump angle 6 is
sin@ —0coso if0<0<n/4,

f(d) = Vg
() ﬁ—(z—e]cose—sine ifr/4<6<n/2
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If f(d) = dP, p > 3 we know that 7 is not |.s.c. (Ambrosio,
Delellis, Mantegazza '99)

If f(d) = d® (ADLM),  I¢isls.c.

Question : Are there any favorable micro-structure for the cost
f(d) = ad??
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Entropies
Definition (DKMO '00)

We say that ® € C*(S',R?) is an entropy if for every
m € C*(w,R?),

V-m=0 e |m=1 - V-{®(m)} =0.
We will denote by ENT, the space of entropies.

Proposition
Ifm € BV(w, S*) satisfies V-m = 0, The entropy production writes,

Hom) = [®(mT) = d(m™)]-vH L.

In particular

f it (m f [®(mT) = d(m7)] - vdH
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For a € CZ(w), we have :

(tior ) = f [D(m+) — S(m)] - v(x) a(x) dH(x).

Definition
Let S c ENT. Form € L*(w, S) such thatV - m = 0, we set

Es(m) = SUp{Z(ﬂq;,,a,-) : (P, @) € SXC(w,R4), Za; < 1}.

i=1 i=1

For the invariance under isometries, we assume that
e Sis symmetric (S = -S),
e Sis equivariant (S = R o S o R~ for every roration R).
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Cost functions

Proposition
The functional Es is lower semi-continuous for the L* topology.

Proposition
For m € BV(w, S?) satisfying V - m = 0, we have
Es(m) = Icg(m),
where
cs(d) = sup{[d)(z*) —CD(Z_)] v

deSs, (zN,z7,v)eSt, (zF-2)-v=0,1z" - 27| = d}.
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Back to the initial cost function
Given a cost-function f, for proving lower semi-continuity of 7, it is
enough to find S ¢ ENT such that cs = f.

Thus, we are looking for a family S =< Sy >, such that,
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|[o(z) - o(2)]- e1|,

z* = (cos 6, +sing), 0 <6 < /2.
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Back to the initial cost function
Given a cost-function f, for proving lower semi-continuity of 7, it is
enough to find S ¢ ENT such that cs = f.

Thus, we are looking for a family S =< Sy >, such that,

f(2sind) = sup
PeS

|[o(z) - o(2)]- e1|,

z* = (cos 6, +sing), 0 <6 < /2.

Lemma

d
® € ENT & Jp € C*(S?) s.t. d(2) = ¢(2)z + @go(z)zl.

Setl=¢+ #(p. We have for z* = (cos 6, + sin 6),

[®(z+) - ©(2)] - €1 = A% {1 gq)Sin}.
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Conclusion

e AG : f(d) = dB, Ok with

d(my,mp) = (M3/3 + msmy, m3/3 + msmy)
e ARS : f(d), Ok with 1 entropy (+ rotations and symmetries)
o f(d) = d?, Ok with a family

[Py, 0<0<n/2}.

~» NO micro-structure.
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Which minimizer(s) ?

A natural solution is the Landau state my(x) := V+d(x, 9Q)

Conjecture (AG, ADLM): if f(d) = dP, 1 < p < 3 and w is convex
then mg minimizes 7.

Known result (AG) : If d = 1, w convex polygon, mg minimizes
Jramong piecewise constant mappings (no vortex).

[l = [ 180 > | [, Ayl = 1dol.

Known result (Jin, Kohn '00) : there exists a non convex w such
that for f(d) = d*, mg is not the unique minimizer.

Proposition (Ignat, M. '10) : There exists w non convex such that
f(d) 2 0 sur [0, V2/2], mg is not a minimizer.



Construction of w













Construction of w, := w \ {0w + B(0, )}













Thank you for your attention !



