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Let m = ∇⊥ψ. Then

|∇ψ| = 1 in ω and ψ = 0 on ∂ω.

⇒ NO smooth solution (jump lines or vortices pour m)

A special solution: the Landau state: m0 := ∇⊥ dist(x , ∂ω)
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Examples :

• AG { f(d) = d3,

• ARS { f(d) = sin θ − θ cos θ, où m± = (cos θ,± sin θ).

• IM { f(d) = d2,



Line Energies
Let f ∈ C([0, 2],R+) be a cost function,

For m ∈ BV(ω,S1) satisfying ∇ ·m ≡ 0 and m = τ on ∂ω we set
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where ∇dm is a diffuse measure, where J is the H1-rectifiable
jump set, where ν is a unit normal vector and where m± are the
traces of m on J.
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Existence of minimizers
Usual method :

• Compactness of minimizing sequences

If (mk ) ≤ λ =⇒ mk
k↑∞→ m ;

• The functional If has to be lower semi-continuous for the
same topology,

If (m) ≤ lim inf
k↑∞

If(mk ).

Problem: The sets {m : If(m) < λ} are not compact in BV .

Method : we will extand If as a fonctional E defined on L1, l.s.c
and such that the sets {E < λ} are compact.



Lower semi-continuity and micro-structure

f(d) = sin θ − θ cos θ.
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The minimal cost of a jump angle θ is
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cos θ − sin θ if π/4 < θ ≤ π/2



If f(d) = dp , p > 3 we know that If is not l.s.c. (Ambrosio,
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If f(d) = d3 (ADLM), If is l.s.c.

Question : Are there any favorable micro-structure for the cost
f(d) = d2 ?
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We will denote by ENT, the space of entropies.
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Proposition
If m ∈ BV(ω,S1) satisfies ∇ ·m = 0, The entropy production writes,

µΦ(m) = [Φ(m+) − Φ(m−)] · νH1
p J.
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For the invariance under isometries, we assume that

• S is symmetric (S = −S),

• S is equivariant (S = R ◦ S ◦ R−1 for every roration R).
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Proposition
For m ∈ BV(ω,S1) satisfying ∇ ·m = 0, we have

ES(m) = IcS (m),

where

cS(d) := sup
{

[

Φ(z+) − Φ(z−)
]

· ν :

Φ ∈ S , (z+, z−, ν) ∈ S1, (z+ − z−) · ν = 0, |z+ − z−| = d
}

.
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Back to the initial cost function
Given a cost-function f , for proving lower semi-continuity of If , it is
enough to find S ⊂ ENT such that cS = f .

Thus, we are looking for a family S =< S0 >, such that,

f(2 sin θ) = sup
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z± = (cos θ,± sin θ), 0 ≤ θ ≤ π/2.

Lemma

Φ ∈ ENT ⇐⇒ ∃ϕ ∈ C∞(S1) s.t. Φ(z) = ϕ(z)z +
d
dθ
ϕ(z)z⊥.

Set λ = ϕ+ d
dθ2ϕ. We have for z± = (cos θ,± sin θ),

[Φ(z+) − Φ(z−)] · e1 = λ ⋆
{

1(−θ,θ) sin
}

.
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Conclusion

• AG : f(d) = d3, Ok with

Φ(m1,m2) = (m3
1/3 + m2

2m1, m3
2/3 + m2

2m2)

• ARS : f̃(d), Ok with 1 entropy (+ rotations and symmetries)

• f(d) = d2, Ok with a family

{Φθ, 0 ≤ θ ≤ π/2} .

{ no micro-structure.
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Conjecture (AG, ADLM): if f(d) = dp , 1 ≤ p ≤ 3 and ω is convex
then m0 minimizes If .

Known result (AG) : If d = 1, ω convex polygon, m0 minimizes
If among piecewise constant mappings (no vortex).
∫

J
|[∇ψ]| =

∫

ω
|∆ψ| ≥ |

∫

ω
∆ψ| = |∂ω|.

Known result (Jin, Kohn ’00) : there exists a non convex ω such
that for f(d) = d3, m0 is not the unique minimizer.

Proposition (Ignat, M. ’10) : There exists ω non convex such that
f(d) 	 0 sur [0,

√
2/2], m0 is not a minimizer.
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Construction of ωε := ω \ {∂ω+ B(0, ε)}
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If(m̃) =

√
2

2
If(m0) + O(ε).



Thank you for your attention !


